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Abstract

This paper describes a system that simulates and evolves virtual creatures.
The virtual creatures exist in a simulated 3D world that has similar prop-
erties to the real world. Each creature's �tness is evaluated for distance
traveled or jump height. The creatures with the highest �tness produce
o�spring for a new generation of creatures to be evaluated. Iterating this
approach dozens or hundreds of times times mimics Darwinian evolution.
Using modern approaches for multithreading the simulation can scale to a
large number of cores with little overhead. We present how we utilize mod-
ern hardware and o�-the-shelf software libraries to simulate up to a million
creatures per hour on a consumer level quad core machine.
We present the arti�cial DNA used to create the creatures, their neural net-
work and how it is used to mutate the creatures. To evolve the creatures
we also describe the di�erent breeding and selection techniques used. While
completely random evolution did not produce any creatures with good ca-
pabilities, specifying some boundary rules of the mutation produced better
results.



We would like to thanks our supervisor Joseph Roland Kiniry for his
support for this project.
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1. Introduction

1.1 Problem Description

We want to build a simulation where creatures evolve that can react dy-
namically to its environment. Using genetic algorithms we will evolve the
physical shape and behavior of the creatures. The creatures will move by
their own decision using simulated physics and using concurrency to scale
the simulation. The inspiration for this project includes Karl Sims' Evolved
Virtual Creatures[10], DALi World[3] and the Microsoft developed Practical
Parallel and Concurrent Programming[7] online course. Using some sort of
�survival-of-the-�ttest� parameter, to determine the best adapted mutation,
the algorithm should pick the best performing creatures of each generation
to further breed.
Currently, real-time interactive simulations, namely games, are using con-
currency to improve performance, but the majority of systems are unable to
scale with the addition of more CPU cores. Many major games use a one-
thread-per-subsystem method, with one thread handling physics, one han-
dling audio etc. and manually using mutexes for locking critical sections[13].
Optimally, we would like to create a scalable system that requires little syn-
chronization and make the parallelization unintrusive.
Because the simulation is dynamic and the composition and behavior of each
creature is dynamic, the concurrency has to work for every kind of creature,
as well as a variable number of cores, making it very di�cult to manually
handle the concurrency. The dynamic concurrency and parallelization can,
in turn, improve the performance of simulation, enabling the system to sim-
ulate more creatures at the same time.

Primary goals:

• create a physics-based simulation of an evolved creature

• evolve a creature, able to adapt to given �tness goals

• using parallelization and concurrency to improve the performance of
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the simulation

Nice to have extra features:

• evolve a legged creature and give it behavioral feature(s) such as vision
and movement

• pluggable creature features like hearing or o�ensive abilities like claws

• have creatures react to some external inputs (like player presence or
injury to the creature).

1.2 Glossary

Concurrency: Methods relating to communication and handling multiple
threads.
Parallelism: Methods relating to running the code in parallel to increase
performance.
Simulation: The simulation of the world in which creatures evolve.
Creature: An arti�cial creature with both a physical body and a neural
network as a brain.
World: The simulated space within which in which creatures is simulated
and evaluated. A world only exists to simulate a single creature, so a world
is created for each creature that needs simulation.
Neural network: The creature's arti�cial brain that gets its input from
the creatures body, and determines the movement and behavior of the
creature.
Evolved creature: Refers to a creature evolved by one or more
algorithms that can react to its environment in its simulation.
Joint: The connection between two parts of a creature, that prevents free
movement of the parts, and limits the possible movements.
Race: De�nition of creatures with similar physical features. Two almost
identical creatures would be referred to as having the same race.
Fitness: A value indicating how good a particular creature is at ful�lling
its given task. An example would be: how fast can the creature moves, or
how high the creature can jump.
Population: A collection of all the creatures in a generation before
selection, breeding and mutation.
Generation: Every time a population has �nished simulating and
breeding it is called generation.
Mutation: Random alterations that is applied to every creature when
building a new generation. It could add or remove limbs, change the neural
network or change an existing part.
Crossbreeding/Crossover: Taking the physical and neural network of
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two creatures and exchanging DNA parts to create an o�spring of the two
parents.
Selection: The decision maker of which creatures gets o�spring.
Phenotype: The physical appearance of a creatures. Includes the body
parts and the joints.
Genotype: The arti�cial DNA created for this project that describes how
the phenotype and neural network is build.

1.3 Technology Utilized

Since we are trying to create virtual evolution with performance as a focus,
the choice of technology is critical, especially since our time-frame was very
limited, we would not be able to create everything from the ground up. It
was therefore necessary for us to create our virtual evolution with as much
pre-existing code as possible to meet our requirements.

1.3.1 C#

Undertaking a project like this, where part of the premise was to recreate
old A-life simulators with new technology, it would be �tting to also use a
modern programming language.
One of the key aspects of our choice was to �nd a language that did not
require too much attention to semantics or memory management. It would
be best if it was a familiar language and performance not much slower than
C/C++ . Built-in concurrency support was also important.
C# was the straightforward choice for us, since we had previous experi-
ences in programming with the language and it supports all needed features.
Microsoft has also developed a simple framework called XNA in C# that
abstracts the graphics initialization and other low level initialization and
handling needed to make a graphical simulation.

C++ was also a consideration, but since experience with C++, was lack-
ing, being able to attain the required goals in time was questionable.

Java was also considered since the programming language also has built in
concurrency support and looks very similar to C# , but since easy utilization
of the graphics card was lacking, and a good 3D physics engine was nowhere
to be found, this language was not chosen either.

1.3.2 XNA

XNA is a game framework developed by Microsoft, written in C# . It ab-
stracts many tedious things that are required for developing a game. It
gives easy access to rendering capabilities, keyboard and mouse input, au-
dio, etc. This allows us to have almost complete control over the rendering
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and update aspect of the simulation. Large commercial game engines like
Unity3D also gives you the ability to write in C# and gives you advanced
rendering methods. However, Unity3D only supports limited multithreading
capabilities and thus not chosen for this project.

1.3.3 BEPU

One of the other critical aspects of the program, was simulating the creatures'
movements realistically. The best solution would be to create photo-realistic
creatures (e.i. a dinosaur would have a dinosaur-like shape and silhouette,
and not be a model made up of many boxes) but due to our time constraints
this was out of the question.
Large scale commercial physics engines like Havok and PhysX support every
feature needed, but only uno�cial and outdated C# wrappers existed and
writing one ourself would be a major undertaking and take up valuable
development time.
Looking through all native C# physics engines we could �nd, BEPU physics
seemed to be the best choice. It is a former commercial physics engine,
that is now open source and still in active development. It had all the
necessary features and the included demos indicated good performance and
it supported multithreading.

1.3.4 NeuralDotNet

There exists a number of open source C# neural networks, among others
AForge1, Encog2 and NeuronDotNet3. All of them supports the needed fea-
tures, as only a basic neural network is needed for this project. NeuralDotNet
was ultimately chosen to be used as it seemed more simple to comprehend
than the other projects and easier to modify to meet this projects require-
ments.

1.4 Inspirational Work

1.4.1 Karl Sims

The main inspiration for this project were Karl Sims' two papers �Evolv-
ing Virtual Creatures�[10] and �Evolving 3D Morphology and Behavior by
Competition�[9]. These papers outlined how it was possible to create simple
life-like creatures via a simulated evolution. Karl Sims' approach was using
boxes as the basic physical shape, and have di�erent types of joints connect-
ing them to create features resembling that of a real animal. To control the

1http://code.google.com/p/aforge/
2Encog
3http://sourceforge.net/projects/neurondotnet/
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creatures joints, he a neural network as a neural network for brain. Sims
was able to evolve creatures that would behave in ways di�cult to replicate
with manually created programmed AI by simulating natural selection. By
randomly mutating the creatures' genes, new features would emerge, and
using selection algorithms to eliminate the creatures that could not adapt,
the �ttest creatures were guaranteed to survive. The surviving creatures
would then go on to breed and create o�spring, where o�springs is a mix of
its parents genes. These o�spring would then be the next link in the virtual
evolution, where the weakest o�spring would be eliminated and the �tter
ones would go on to breed.
We also found two videos showing the results of his work [8] with the second
also containing an interview [11].

1.4.2 AI Game Programming Wisdom

AI Game Programming Wisdom was a book series containing of four books
published between 2002 and 2008. Each book consisted of a series of articles
of di�erent subjects all related to AI in games. Articles include papers on
game unit tactics, learning, path�nding and general AI code architecture.
We had access to AI Game Programming Wisdom 2 published in 2004. We
used three articles on how genetic algorithms work to help build this project.
[15], [14] and [1].
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2. Parallel Architecture

A simulator can be a fairly easy task, if doing calculations is the only goal.
However, writing a good simulator that can make good use of the hardware
to increase performance, can vastly decrease the duration of the simulations.
Having good visualization of the simulated data can also help with the un-
derstanding of the results. But for this project we aimed not just to make a
fast simulator with good visualization. We attempted to create the fastest
arti�cial life simulator to date. In the following chapter we describe what
went into this attempt.

2.1 Requirements

• High performance Must be high performance to improve iteration
speed.

• Interactive & observable simulation All aspects of the simulation
must be interactive and observable if desired by the user. Being
able to see the strands of the evolution should make it easier to
debug. Increased performance should improve iteration speed as
results become available faster. This requirements will simply be
referred to as being interactive.

• Scalability Must be able to scale close to linear in regards to number
of cores on normal consumer hardware. At time of writing you
can expect up to 4 cores in a CPU where some CPUs can handle
two hardware threads per core.

• Simple implementation Being able to easily understand and reason
about it should help to avoid normal problems like deadlocks and
race conditions.

Most of these things are pretty standard requirements, like high performance
and simple implementation. Especially �simple implementation� is some-
thing that is always desired by developers, but not always achieved. Parallel
programming may also face race conditions and deadlock problems, some-
thing we hope to avoid by sidestepping the problem as much as possible.
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Locks should only be applied to private data and race conditions be avoided
by use of simple concurrency safe collections. See �Implementation�, sec-
tion 2.5, for more details.

2.2 Game Loop

This section is a short introduction to how games are usually structured as
the core concept is very similar to this project and uses technology designed
for video games.
While the simulation aspect of this project strictly speaking is not a video
game, it shares many of the same aspects. Video games and this project
share the of needing to get the user input (keyboard & mouse input), updat-
ing the simulation, render the result and repeat. Each full iteration of the
game loop is referred to as a frame. The state is maintained between frames
and updated during each frame iteration.

Figure 2.1: Simple overview of update process of a single frame and the
looping of the frames

The update process of each frame is also strictly linear. If you switch
around the order of the input, physics update or rendering, it will take longer
for the game to react to the user input. Input lag is something that should
be avoided as it makes the interactive part noticeably more annoying to work
with. Having a separate thread to receive user input does not improve reces-
siveness as the game cannot react to the input before next frame. On current
hardware the minimum delay one can expect is three frames multiplied by
the length of a single frame [17].
The interactive part of the simulation is mostly in regard to moving and
rotating the virtual camera. The mouse is used for rotating the camera and
the keyboard for moving the camera, usually in the direction the camera is
facing.
The higher the frame rate the smoother the simulation, usually between 30
and 60 frames per second (fps) is required for a smooth simulation. Frame
rate stability also matters. If the frame rate continuously jumps between 30
and 60 fps, users will still notice the instability.1

1http://en.wikipedia.org/wiki/Frame_rate#Video_games

7

http://en.wikipedia.org/wiki/Frame_rate#Video_games


To cope with varying frame rates, each frame is usually updated with how
long the previous frame took to update. This makes the game seem less
jittery than it actually is. Say you want the camera to move 100 units each
second. Multiply 100 by 0.016 (if the last frame took around 16ms) and the
camera will behave uniformly with varying framerate.
If the computer can run the simulation faster than 60 fps you have to cap
the frame rate unless you want the simulation to run faster.
Having a uniform framerate is especially important with the physics engine.
The physics engine is the part of the code which handles all the physical in-
teraction and behavior of everything in the simulation. As it is only updated
in discrete steps the behavior of the physical objects can change drastically
depending on how long a frame takes. This is because a physics engine
usually �rst updates the position of involved objects and then resolve any
collision. Say that two high speed objects �y directly at each other and fram-
erate is low, the objects could �y directly through each other as they never
collide according to the physics engine. Some engines solve this problem by
having the physics engine always update with the same timestep and simply
avoiding having high-speed objects. It is one example of how too high or too
unstable framerate can change the results of the physics engine.

2.3 Parallel Simulations and Rendering

To achieve a high-performance simulation without compromising how ob-
servable it is, special considerations must be taken of the observability. If
the frame rate dips below 30, reaches above 60 or is generally unstable it
becomes unbearable to watch. A solution must be able to stay within that
framerate and if requested by the user any simulation must almost instantly
be rendered. Each frame is also strictly linear as described in �Game Loop�,
section 2.2 . Only a single simulation can be rendered at a time.

To pick the best solution, we will propose three possible ones in this section.
There are of course more possible solutions and the three discussed here
can themselves vary. These these solutions should be simple to implement
and must provide good performance. Having simple and e�ective solutions
should make bugs less likely to appear and improve development speed.
A few prerequisites is needed before describing the . With modern CPUs
supporting around 2-8 parallel threads, the solution has to scale at least
up to 8 threads. There should not be a hard-coded maximum number of
threads. It is expected that each thread used for the simulation will be
fully utilized, so any more threads than the hardware support will lower
performance because of thread switching.
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Figure 2.2: Overview of the frame-by-frame synchronization for three parallel
threads.

2.3.1 Frame-by-Frame Synchronization

With frame-by-frame synchronization, Figure 2.2, all threads start and end
the frame at the same time. Each thread is assigned it is own simulation
world. Each world updates its inhabitants' physics and their neural net-
works. They then have to wait for all threads to �nish this frame before
rendering starts. Only one thread is used for rendering and it renders only
the world the user sees. Also only the active world receives any user input
to avoid unwanted behavior.
The primary advantage with this approach is that communication with each
world is very easy due to the synchronous approach.
As all simulation threads are suspended while waiting for the renderer to
complete, an opportunity is given to manipulate any accessible simulation
data in the program with no risk of concurrency problems. Using one of the
other solutions, it is only safe to manipulate simulation data when an entire
generation is �nished simulation.

Frame-by-frame synchronization should also give a stable frame rate with
no background threads interrupting the rendering. It also enables you to use
all available threads for simulation which the other solutions may not.
However this approach severely limits performance. With all simulations
being suspended every time rendering occurs, you loose a lot of cycles that
could have been spent on the simulation. Especially if one creature takes
longer than the other. Also the more time spent on rendering, the less time
available for simulating.

2.3.2 Synchronized Rendering

Synchronized rendering, Figure 2.3, is a solution where only the world the
user is observing is synchronized. All threads run with their own isolated
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Figure 2.3: Sequence diagram-inspired diagram of synchronized rendering

simulation with only the thread handling the observable simulation, is syn-
chronized.
The thread handling the observable simulation runs the simulation the same
way all the other threads do, except for when it should render. There is
an extra thread whose only purpose is to render the observable simulation.
During rendering the active simulation thread simply waits for the render
thread to render and visa-versa when simulating.

This solution should have excellent performance. Only a single simula-
tion thread at a time is synchronized so there will be minimal overhead.
Depending on the implementation and how system handles rendering with
almost 100% CPU utilization, this solution can cause problems for the inter-
active aspect of the program. To avoid this problem, it may be necessary to
use a hardware thread only for rendering, loosing a thread that could have
been used for simulating.

Not needing a dedicated thread for rendering would be a better solution,
but XNA restricts all rendering to the the main thread. Not having to
worry about which thread renders the simulation could provide for a simpler
solution as less synchronization would be necessary, but that is not possible.
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Figure 2.4: Sequence diagram-inspired diagram of unsynchronized rendering
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2.3.3 Unsynchronized Rendering

Unsynchronized rendering, Figure 2.4, is similar to synchronized rendering,
expect that the rendering, as the name suggests, is unsynchronized. The
di�erence is that the simulation thread, instead of waiting for the renderer
to �nish, makes a copy of the objects that should be rendered and via some
mechanism sends it to the render thread. After the copying the simulation
thread starts simulating the next frame.
The problem with this approach becomes very clear when the speed of the
simulation does not match the rendering. Say the simulation runs 200 times
per second, but the renderer can only render 60 frames pr. second. Rendering
only every three frames or letting the rendering fall increasingly behind are
both terrible solutions.
The only proper solution is to approach the synchronized solution above.
If the renderer falls behind the simulation thread must wait. With this
approach the previous frame is rendered while a new is being simulated.
However, the closer to 100% CPU utilization the program has, the less do
you gain by this approach. If the render thread and some simulation thread
continuously steal CPU time from each other there is no bene�t over the
synchronized rendering solution.

2.4 Selected Method

For this project we have chosen to implement the synchronized rendering
approach. It is simpler to implement than unsynchronized rendering as it
does not have problems with the renderer being slower than the simulation.
There should also be considerably less overhead than the frame-by-frame
synchronization, which seems to be the easiest solution to implement.

2.5 Implementation

Synchronized rendering and XNA is not completely compatible. As described
in �Synchronized Rendering�, subsection 2.3.2, the render thread has to be
the same as the main game thread and thus rendering cannot happen on a
simulation thread.
Trying to implement it the parallel architecture so simply as possible, the pri-
mary focus was on isolating the parallel parts and making the parallelization
intrusive transparent as possible. The code handling the simulation should
only be aware of its own simulation. It should not know about anything
other than itself.

In this context a world refers to the physical world with a creature being
simulated in it.
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Isolating the code handling the frame-by-frame simulation is the core part
of the implementation. The two most important classes are SimGame and
NormalWorld. SimGame is the class handling the rendering and initializa-
tion of the program. It also knows which world is the one being observed.
NormalWorld is the class handling the simulation of a creature. Each simu-
lation thread runs a single NormalWorld and thus a single world.

The code handling the simulation is all contained in a class called Normal-
World. It is given a queue with creatures waiting to be simulated and queue
to push the creature to when the creature has been given enough simulation
time. How long a creature is given depends on the simulation and can be
changed depending on the simulation.
To facility communication between the main thread and the simulation
threads we created a service provider. The di�erence between this and other
service providers is that it facilitates that each world is unique and can fetch
di�erent services depending on which worlds requests a service.
With rendering being restricted to the main thread because of XNA an inter-
locking mechanism is needed between the simulation threads and the main
thread. Making the NormalWorld oblivious to how it is rendered was also a
goal to separate responsibilities.
To accomplish this a handler for the simulation thread and world was cre-
ated called WorldUpdater. WorldUpdater handles frame duration, rendering
requests and is able to suspend the simulation on demand. It is the class
that initiates each frame update.
Rendering requests is a method pointer call to SimWorld. Every world re-
quests rendering, but only the world the user is observing is rendered. The
thread handling the observable world is yielded until the main thread com-
pletes rendering. If XNA is ready to render before the next frame is simulated
the main thread simply yields until a frame is ready.
This way the rendering is centralized to one place and NormalWorld is com-
pletely oblivious to being suspended.

With a variable number of creatures in each generation and a variable number
of threads a work distribution system was needed. With the work units being
very coarse grained, we implemented a simple concurrency wrapper around a
C# queue, exposing only the minimal needed functionality. It is a simple lock
mechanism that is contained within the that class to avoid locking problems.
To avoid problem with the physics engine when the frame rate is not 60
hz, every physics engine update is always done with the same timestep of
16.6ms, emulating 60 hz. This results in reliable physics simulation that
behaves consistent no matter the actual speed of execution.
Parallelization of the breeding at �rst written single threaded to make the
program run. No regards was given to performance in its implementation.
Before trying to parallelize the breeding we observed the performance. In
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general the breeding takes about 2-0.5% of the total run time of each gen-
eration. This was observed with both small and large creatures on slow and
fast computers. Deeming the performance good enough we choose not to
parallize the breeding.
To avoid compromising between how interactive the simulation is and the
performance of the it, there are three modes the program can be in: inter-
active, balanced and performance. In interactive mode rendering is enabled
and the frame rate is limited to the refresh rate of the monitor, usually 60.
In balanced there is no frame rate limit and rendering is still enabled. In
performance mode there is no frame rate limit and no rendering. This is
made by simple ignoring any rendering requests and make the main thread
draw a blank screen.

This solution does have some limitations. It is cumbersome to communicate
between the main class and the di�erent worlds. All reliable communication
has to be via the service provider. Any query of worlds state may be invalid
if the world happens to be in the middle of an important method.
It also lends itself to unstable frame rates on some computers. On some
computers, when simulating on all available hardware threads, the frame
rate dips to non-interactive levels or jitters wildly. If the observer just want
to run the simulation it is not a problem, but if trying to debug or observe
the evolution, it is a problem. Why this changes so much depending on the
computer we do not know. Using one thread less than the available amount
avoids the frame rate instability, but this will increase simulation time as the
simulation runs one less thread .

When we started on the project we also though it would be a good idea if
there were a separate camera for each world. This way each creatures could
be observed individually, however this turned out to bad a idea since the
camera had to be repositioned for every world.
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3. Arti�cial Life

3.1 Introduction

In our simulations we wish to create arti�cial creatures using some basic
principles of evolution. In this chapter we discuss the implementation of
these principles in the program, and creation of arti�cial life forms capable
of developing a brain.

3.2 Neural Network

A arti�cial neural network is a network inspired by how real biological neu-
ral network works. Arti�cial neural networks will be referred to as neural
networks.
A fundamental element of neural networks are their ability to learn. Based
on some input and a desired output, they are trained to transform the input
to the desired output. Which input is given, what the output is and how the
network is trained, depends on its application area. The primary reason for
using neural networks is because they adapt to solve a problem.
A network is composed of a set of neurons communicating via connections.
The input is gathered by the neuron from the connections to it and trans-
forms the input to an output. The transformation is called an activation
function and is usually non-linear. A common shape of a neuron is the shape
of a sigmoid function. Each connection is weighted, meaning the value going
through the connection is multiplied by the weight. The network can change
behavior by changing the weights.

A full cycle of the network is made every frame. Every neuron is given the
output of every other neuron connected to it, and the output propagates to
its target neuron.

To react to the state of the phenotype of the creature, each part is given two
input neurons and two output neurons. The �rst input neuron is activated if
the part touches the ground and the other is continuously given the angle of
the attached joint. The output neurons are both used to control the joints
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motor that will move between its minimum and maximum angle. Depending
on which neuron outputs the largest value, the joint will move towards its
minimum or maximum angle.
Using input neurons that reacts to di�erent kinds of input is also a possi-
bility. The implemented neurons are two options among many. Other types
of input neurons could be proximity based sensors, speed sensor or perhaps
a timer sensor. In combination with di�erent �tness algorithms these could
help train a creature to for example move to a static light source or even a
moving light source.
While there are many possibilities, we deem the two implemented input neu-
rons the most important ones. Collision reaction and joints awareness are
some of the most two fundamental input awareness a living being can have.
It allows reaction to its environment, while the other suggested inputs could
help evolve more dynamic creatures, we do not deem them essential. They
would be interesting to implement in future work.
The choice of output neurons is made from using the same arguments as the
input neurons, using the output neurons for the most basic of movement.
Controlling joint stretching and retracting is the most fundamental parts of
movement control. Additional output neurons could control the speed and
strength of a joints movement.

To create more varied behavior of the neural network, four di�erent types
of neurons are used that all operate in the 0 to 1 range. While a sigmoid
function operate in the -6 to 6 range, we believe that a smaller range would
be easier to control and thus give better results. Since changing the operation
range will a�ect the result, we lowered the default weight of the connections
to compensate for the smaller range. While we cannot say how it a�ects the
result, we can still con�dently say that the neural network works and reacts
to the simulated world.

The four di�erent types of neurons are described below with their general
shape shown in the pictures below them.

Gompertz is similar to a sigmoid function, but allows more control over
growth and range.

Threshold function, activates at 0.5.

Gaussian function is a curve that looks like a bell. The standard form
never output negative values and peaks where x = 0.

Wave function is a modi�ed sinus curve that does not use take input, but
oscillates based on how long the creatures has lived. . . .

To enable the creature to move without external input the wave neuron was
added. The behavior of the creatures was rarely a�ected by the angle of the
input and thus only moved when the right part was touching the ground.
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(a) Gompertz (b) Gaussian (c) Threshold (d) Wave

Figure 3.1: The shape of the four di�erent activation functions used. They
may di�er slightly in the implementation.

The addition of the wave neuron gave the creature a more reliable input than
just relying on external factors, like touching the ground.

Mutation of the neural network is done without regards to the creation of
cycles. Having cycles in a neural network makes it recurrent. Recurrent net-
work contains an internal state and this may result in temporal behaviors1.
Having a temporal behavior could make the network more unstable with new
input being negated by its current state. It could also improve e�ectiveness
by using its state to handle new input better. This is only theoretical as a
non-recurrent network has not been implemented.

We compared our neural network to that of Karl Sims. In his simulation of
the neurons, the cycle only propagates two steps every frame. In this project
the entire network is run to completion for each frame. NeuralDotNet only
supports a full run of the network. While it is not possible to compare the
two implementations in this project, we think that this projects approach
gives a more reactive network, as any input immediately a�ects the output
sensors. It could result in more unstable behavior as any change is immedi-
ately re�ected in the behavior of the creature.

3.3 Physical Creatures

Opposite the genotype, is what Karl Sims refers to as the �Phenotype�. A
phenotype is the physical representation of the genotype; the genome. Each
creature is made from the description that it inherits. The genotype, like
the DNA only holds information on how to build the phenotype, and does
not directly contain any information that the creature receives during its
lifespan.

1http://en.wikipedia.org/wiki/Recurrent_neural_network
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3.3.1 Boxes

The goal of our phenotype is to have something that looks and preferably
acts like a real creature. While it is not currently possible to make living
creatures photorealistic2, it is possible to make models that resemble them
a lot. The problem with this is that the models are not easily generated,
and take up a lot of computing-power. Creating and simulating a skeleton
is a much easier solution, but the collision area of a skeleton is much smaller
than a real creature with muscles, meat and body tissue. Adding muscles
to the creature would also take up a lot of processing power, and add a lot
of work on top of the existing requirements. The goal however was not to
create any existing creatures, but to create creatures that were able to adapt
to their environment and to a given �tness measurement.

To approximate the shape of a creature, but retaining some shape and
have good performance in the physics simulation, we use simply geometry.
Using multiple small shapes can approximate more complex appearances
while retaining fast performance. It is the same approach large game pro-
ductions use[2, 19]. An example of a human approximated, from the game
Unreal Tournament 3, via simple shapes can be seen in the appendix, Fig-
ure D.

3.3.2 Joints

Connecting the boxes is simple enough, but making them lifelike is a di�erent
case. Movable joints need to connect them, that allow for di�erent movement
limits.

Along with joints are motors, the control mechanism for joints which act
as the muscles of the joints. It moves the joint within the speci�ed limits, and
by linking these motors to the neural network, we get the creature behavior.

The physics engine supports creation of di�erent types of joints. Among
others, it supports universal, ballsocket and revolute joints[6] that all behave
similar to their real life counterparts.
For this project we have only used revolute joints. This decision was a
combination of the simplicity of using a joint the abundancy of that joint
in nature. While revolute joints found in nature, like elbows, we have more
unrestricted movement allowing bending up to 180 degrees. We deemed
universal joints too unrealistic, but could be used in a future project. Ball
sockets joints, like shoulders, are very commonly found in nature, the control
mechanism was incompatible with revolute joints as they allow for movement
around two axis, while revolute only allows one.

2Computed generated pictures may be indistinguishable from photos, but we have yet
to see a video that is indistinguishable from a real video.
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3.3.3 Phenotypes in Practice

With the above mentioned boxes and joints, we were able to create and evolve
creatures in combination with the neural network. The boxes (although
maybe a bit unfair) provide a big �at surface that help the creatures balance,
even with just one �leg�.
All boxes are connected via revolute joints where the genotype controls the
features like how strong a joints movement is, how fast it can move, minimum
and maximum angle.

3.4 Genotypes

When we are talking about simulating evolution of creatures, it is important
that we copy any critical factors. In the case of creating o�spring from �t
creatures, it is then extremely important that we have some sort of digital
DNA.

According to Wikipedia, DNA is a

�nucleic acid containing the genetic instructions used in the de-
velopment and functioning of all known living organisms�[18]

While the theory is a lot more complicated, this is the core idea, that we need
to copy. Furthermore DNA does not stay intact. Among other reasons, ra-
diation or small chemical malfunctions can cause the DNA to be �corrupted�
or mutated. Mutation is thought to be random, and any part of the DNA
could potentially be altered. While mutation may have negative side e�ects,
it is believed to be part of the reason that creatures can evolve, since it can
also provide better suited genetic features for a given environment.

3.4.1 Representation

While the DNA is easy to replicate (4 base pairs form a code. A base-4
language), it is not a very practical solution when working with as simple
creatures as we do. DNA stores an immeasurable amount of data and is very
context speci�c. A strand of DNA moved to another place would produce
very di�erent results. Creating a copy of it is not impossible to do, but we
deemed it would take too long time to create and opted for a more straight
forward solution.

A solution that is similar to real DNA would be a binary code represen-
tation. With it being similar to real DNA, it su�ers the same drawbacks as a
copy of real DNA. Binary code would be very delicate to handle, and would
need to be designed in a manner that would allow for totally random mu-
tation, variations and lengths of code. As with real DNA it not impossible,
but simply deemed to take too long to implement.
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A more readable solution would be using strings and would allow for
human readable data and much simpler implementation. We opted for this
approach, but it does have some drawbacks. It disallows completely random
mutation and crossover. Both can only happen at predetermined points
to keep the DNA valid. A class representation was implemented to simplify
mutation and crossbreeding. Using these it is impossible to mutate non-legal
places in the string.

3.4.2 String DNA

The string representation of the DNA, is a basic description of each subpart
of the creature. The four categories of subparts are: Part, Joint, Neuron

and Connection. Each part then has a number of �elds, that have been
uniquely named (ex. part and joint can not both have a �eld by the name:
�x�. One is named �x� and another is named �jx�). A �eld can contain an
integer, �oating point number, string or a boolean. The type is converted
from a string to its respectable type, at di�erent points during the program
execution.

At the beginning of the program, a DNA seed is created, that will be
the entire population of the simulator in the �rst generation. This is cre-
ated from a string DNA. If a command line is passed to the program that
identi�es a �le with the string DNA, the genotype seed used will be the one
loaded from the �le.

The advantages of strings are the readability and ease of saving/loading
them, regardless of how they are stored.

The inspiration for genotype description came from a similar project
called framsticks[4]. It also used a textual DNA representation[5] and seemed
to �t the needs for this project. It was used as the inspiration for the DNA
used in this project. While similarities de�nitely still exists, the many vari-
ables is changed. Some information in the representation is no longer used,
but is kept for compatibility.

A full description can be seen in �Full Genotype�, Appendix A .

3.4.3 Class DNA

While string DNA in a sense is close to an actual strand of DNA, it does
not behave in any way like a regular DNA. True DNA can be mutated at
any place. While our string DNA is open to random mutation, it would
cause corruption, that would possible lead to the simulation crashing. It is
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easy to split up the string, and then only mutate part of the string, and
avoid corrupting the �eld-names or splitting-symbols. Even if a mutator was
written, that could distinguish between what should be integers, �oats etc.
it would be hard to cross-breed the creatures.

For this reason we also created a class representation of the DNA infor-
mation. The DNA class contains four lists. One list for each type of DNA
where each item contained a representation of a single part of the creature (a
joint, part, neuron or connection). These lists would make it easy for us to
manage the DNA subparts, mutate them in a way that would not corrupt the
program and allowed us to do easy look-ups, which in turn allowed for cross-
breeding in a manageable way. This approach however limits crossbreeding
to a simple exchange of objects. Single objects cannot be split.

String DNA and class DNA represent the same information, and can
therefore be converted between each other without any information-loss.

3.4.4 Mutation

A key point to evolution is the randomness of mutation, that is able to
produce new unexpected creatures, with features that are either better suited
for the environment, do not matter or produce features that cripples the
creature.

As mentioned, total random mutation would not work within our sim-
ulator, and a di�erent system for mutation had to be set up. Instead we
used the class representation of the DNA to create a subpart-speci�c muta-
tor, that we could tweak for individual �elds. Each �eld would have either
have a random value (positive or negative) added to them, or have an equal
chance of mutating into each possible value. (e.g. true/false)

With such a mutator it would be easy to mutate every gene for each crea-
ture, but we needed to simulate real life as much as we could in our numbers,
so we allowed for more extreme mutations, but only a few across all subparts
per creature. A �roulette� would pick the number of �elds that should be
mutated for each creature. An unlimited number of mutations is possible in
theory, but a high number of mutations is highly unlikely, and a low number
is often occurring, with zero as a possible amount. Afterwards the random
amount would be used to choose parts, joints, neuron and connections. For
each subpart a �eld would then be chosen, and then the mutator for that
individual �eld would provide a new random value.

3.5 Evolving Life

3.5.1 Cross-breeding

Another reason that evolution could be made possible is the process of cross-
breeding. Many animals and organisms require breeding before o�spring can
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be created. Due to low odds of identical DNA and mutation, the o�spring
will have a chance of have a �tter genotype than its parents (however the
opposite is also a risk).

During natural breeding, a new DNA is created from a combination of
the parental DNA. To simulate that a number of algorithms exist.

One-point crossover

A one-point crossover is the simplest form of crossover, that is also the least
natural one. Two strings of DNA are combined by splitting both DNA at the
same position, and then using one end of each DNA to combine the o�spring.

Figure 3.2: Example of a one-point crossover

Two-point Crossover

The two-point crossover is similar to that of the one-point, but allows for
both the beginning and end of a DNA to be from a single parent. Instead of
one split across the DNA, two are made, and the ends and the middle part
is used to produce an o�spring.

Figure 3.3: Example of a two-point crossover

Multi-point Crossover

The two previous crossover algorithms, while simple and having a good
probability of creating working creatures, are not totally random in their
crossover, and allow only for big chunks of DNA to be passed along. The
multi-point crossover di�ers in that it allows for total random crossover. each
single �step� on the DNA of the o�spring has a 50-50 chance of being from
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either parent, and that allows for greater variety in the o�spring. However
with total randomness also comes a greater risk of creating invalid creatures.

Figure 3.4: Example of a multi-point Crossover

3.5.2 Fitness Explanation

The phrase �survival of the �ttest�, which is often used to describe the core
principle of evolution would also appear to be a reasonable explanation of
what happens in our simulation. While due to di�erent selection algorithms
(See Section: Selection Algorithms) this may not always be the case. How-
ever the principle of a ��ttest� creature being a survivor is still what goes
on.

However how do we decide what creature is more �t than others? In
farming, this is done �by hand� but this process needs to be automated, so
we need a measurable number, that we simply call ��tness�. The more �tness
a creature has, the better it ful�lled a measurable goal.

3.5.3 Use of Di�erent Fitness Algorithms

Measurable �tness targets are almost unlimited, but we need simple tasks
that can be measured across most or all creatures that can be developed. The
�tness measurement should also indicate what the desired behavior should
be, ex. if realistic movement is desired, it isn't simply enough to measure
the distance traveled, since the nicer movement in no way is re�ected in
the distance the creature moved. The more speci�c the goal is, the harder
it is to measure across a number of creatures, how �t they are. Using the
�nice movements� example, how is the nice movement de�ned, and could this
algorithm be exposed to create creatures that are �t, but do not move in the
desired �nice� way?

To help guide the evolution the goal had to be clearly stated. For exam-
ple: distance traveled or jump height.

Measuring distance can be done in a number of ways, but our approach
was to take the average position of all parts in the creature at the end of the
simulation compared to the center of the world. The di�erence in width and
depth (2D distance) was the traveled distance.

Height will be measured as the average distance as well, but along the
third axis. The value will also be the maximum amount of height obtained.
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Depending on how the creatures are added to the world (when the may ex-
perience a small drop, after spawning at a higher position, than the ground)
measuring only after a given amount of time would be important. Height
can also be measured in how high the creature's average Y value is at the
end of the simulation.

Proximity will be a reverse �tness, where the smaller �tness will be pre-
ferred. The �tness will be the creature's average distance from a given posi-
tion on 2 or 3 axis.

3.5.4 Scaling

After measuring the �tness of all creatures, a number of scaling options can
be applied, to remove extreme biases towards �tter creatures, or increase the
di�erence the �t and less-�t creatures.

No Scaling

If no scaling is applied after �tness evaluation, the raw �tness value becomes
the number fed into the selection algorithm. This has the advantage of be-
ing completely unbiased, and leave any creature with extreme �tness, remain
with an extreme number, compared to the other creatures. The drawback
is however that an extreme �tness can severely dominate the creature pop-
ulation, and take over, which isn't optimal. While �tter creatures should
survive and remain, diversity will help prevent the evolution to hone in on a
single ultimate gene.

Linear Scaling

One solution to the above mentions problem is the linear scaling method.
For a population of X the creatures will have their �tness scaled according
to the size of the population. The �ttest creature will have the value of
the population size: X, and the second �ttest: X-1. That way the �ttest
creature still has the highest �tness, but any great gap in performance is
reduced. The �nal population will thus have �tness ranging from 1 to X[1].

Sigma Scaling

Sigma scaling is a formula that alters the �tness for the population, to have
the best creatures dominate, but not let any weak creatures be left with a
tiny value[1].

NewFitness =
OldFitness - AverageFitness

2σ
(3.1)

Sigma(σ) is the standard �tness deviation in the population.
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σ =

√ ∑
(f - mf)2

PopulationSize
(3.2)

Here f is the �tness of the creature and mf is the average �tness.

3.5.5 Selection

The �nal algorithm we use to simulate natural evolution is the selection
algorithm. This is the key algorithm that determines what creatures get to
reproduce, who will reproduce with who, and how many o�spring they will
get. In our project all selection algorithms needed to output just as many
o�spring as there would be parents.

No Selection

The easiest solution is to entirely skip the crossbreeding part. After all
the mutation is the part of the evolution that gives new features, and the
algorithm will easily return as many creatures as is received, since the output
is the same as the input. However no crossover will have an e�ect on how
fast �t creatures can appear, and how many di�erent possible solutions will
appear from the evolution.

Random Selection

Random selection is exactly what the name suggests. Two creatures are
continuously randomly picked and breed until the population size reached a
speci�ed number.

Size Tournament

One of the simplest selection algorithms is the selection algorithm. It will
pair two creatures, and remove the least �t creatures. This will half the
population, and the remaining creatures will cross-breed, until the o�spring
population will be the same size as the parent population.

Probability Tournament

Probability Tournament is our own version of the Size tournament. Instead
if the �ttest creature winning, we give the �ttest creature a high probability
of winning, but not guaranteeing it. This way a less �t creature CAN win
over a �tter creature, but the bigger the di�erence in �tness, the less likely
it is.

Probability = 0.5 +
( HighestFitness - LowestFitness
HisghestFitness + LowestFitness

)

2
(3.3)
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Calculation of winning chances in a
Probability tournament for the �ttest creature.

Probability tournament should help increase the variety of creatures in
the population, to prevent the tendency to let a single race of creatures
dominate or take over the population.

3.6 Elite

Elite selection it used to keep a population from decreasing performance.
With this enabled the best percentage of creatures, 10% in this project, is
not mutated or crossbreed[1].

3.7 Elite Copying

Elite copying is a term we have introduced for this project. It is a di�erence
to elite selection, the best percentage is not changed or breed for the next
generation, but in addition they are also cloned into the rest of the population
to mutate and crossbreed. This give fast results, but also quickly converges
on a solution. This removes the worst creatures each generation and thus
could converge on a similar solutions in only ten generations.

3.8 Staleness

Staleness is used to keep the evolution from reaching a plateau where the
elite creatures keep being among the elite. Staleness applies only to elite
creatures. Each creatures DNA contains a counter for how many generations
in a row generations it has been a part of the elite percentage of creatures.
If a creature is not among elite creatures its staleness is set to zero. While
staleness removes some of the bene�ts of elite, it also avoids the solution
from reaching a �tness plateau. There is however no guarantee the solution
will not simply converge on the same solution again or if a better solution
will ever be found.

3.9 Solution Limitations

While the solution allows varied creatures and has good performance, see
�Results�, chapter 4, it does contain a number of limitations. All of which
would be nice to �x in future work.

The �rst limitation is the use of third party software. Without a physics
engine like BEPU we would never have made it as far as we have. It is truly
a case of the idiom �you have to take the good with the bad�. However it
still has a number of problems with unstable joints physics and contains a
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number of bugs when running multiple instances in parallel. NeuralDotNet
was both a blessing and a curse. A good deal of bad workarounds was needed
to implement the needed features like varying type of neurons. It was also
unnecessarily complex for our need and does not support partial runs of the
network. The good thing is that once it was all set up it ran without any
problems.

The mutator is an essential part of the solution, but it is limited due to
its implementation as it can only do semi-random mutations. Updating the
mutator to be more aware of the the phenotype of the creature would help
to create more exciting and life like creatures.
The limitations was in the addition of parts, how the neural network was
added to a part and how a new part was formed. When creating a new
part a neural network is not attached. Only input and output neurons were
added and no connections were made. Until another mutation happens and
the neurons are connected to the neural network a new limp is essentially
dead weight.
Adding a new part to the creature is only limited by a very basic system.
While the notion of head, body and limp to control part placement does
exist, it still allows placement of parts inside other parts. If not placed in-
side another, the position can later be randomly mutated to end up inside
another part. Improving the part addition code should allow much more
interesting creatures.

With the semi-random placement of new parts, a part could violate the
constraints of the joint connected to it. A violation is generally when two
connected parts is placed with an angle between them that exceeds the min-
imum or maximum angle. It can also happen when a box is placed inside
another. When a violation of the joint happens the physics engine tries to re-
solve it. Sometimes it is not possible for the physics engine to resolve it, but
it cannot do anything but keep trying. This usually makes the a�ected parts
jitter wildly and can in worst case suddenly �y into the air. Because of these
problems collision between the creatures parts are disabled. An improved
phenotype creator would help avoiding the problem in the �rst place.
When calculating a creatures �tness value, it can only be calculated from the
creatures �nal state. This resulted in a limited view of the true performance
of a creature. A creature evaluated for its jump height could be the best of
its generation, but could be rated zero if the jump starts to late or too soon.
A continuous �tness evaluation could result in more varied behavior and
more complicated evaluations. One example is a �tness function created to
breed legged creatures. This �tness function could punish creatures where
the torso touched the ground, forcing the creature to evolve around this
limitations. This could possibly produce legs or could evolve some creature
we could not even imagine.
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Possibly the most serious limitation, or bug if you like, in the program is that
the simulation runs di�erently in debug and release mode. This also a�ects
saving and loading. At time of writing we do not know where this problem
lies. We think it is due to how di�erences in how the program �oating points
are handled in the di�erent modes. Where the bug lies we do not know at
the time of writing.
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4. Results

4.1 Performance

When running our GALAPACOS program, the performance lived up to our
expectations. In terms of performance utilization with a varying number
of cores, the simulation scaled well, and the number of creatures being pro-
cessed, reached new heights. GALAPACOS refers to this projects simulation
program. To fully test the parallelism of the chosen solution, we decided to
run the tests without rendering. Rendering is more a benchmark of the com-
puters video card than the CPU, simply chancing the position of the camera
can change the framerate drastic.

Since we based this project on Karl Sims' research, we also used him
as a benchmark. It should however be kept in mind that his project was
running on state of the art hardware, though this was in 1994. While Karl
Sims had access to supercomputers, we only had access to home computers.
Other programs for evolving virtual creatures exist, but we do not have as
much detailed information regarding them, and the ones that we were able to
try our selves, did not match the speed of GALAPACOS. The latest similar
program [4], did not support the utilization of multiple cores, and thus had
a very slow evolution, that was limited to what the program could render.
With each creature having a default lifespan of 20 seconds, the simulation-
time we measured was 10 seconds on the i7 processor per creature at its
fastest. A comment on a video of the program on Youtube gave us an
indication of the performance over a longer stretch of time:

�It is a real shame this isn't multi-threaded, especially since my
CPU has 12 threads so less than 10% of the potential computing
power is available.I get about 300-1000 fps when it is running
the simulation, so I get about 100 generations done in 24 hours,
depending on the settings of course.�1

We think the CPU is a 6-core i7 processor as all i7 processors have two
hardware threads per core. It could also be a server CPU, but we deem it
more likely to be an i7. Bear in mind that the default generation size is 50,

1http://www.youtube.com/all_comments?v=01rsTBJMmQo
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Processor Cores Runtime Max time pr. generation

Intel i5 2500 4 4:20
Intel i7 Q720 8 6:43 4.7 seconds
Intel Core 2 Duo T6400 2 40:24 28 seconds
CM-5 32 3 hours ?

Table 4.1: Runtime of the simulator (in minutes and seconds), with similar
variables in terms of simulated time, population and amount of generations.
The CM-5 is Karl Sims' simulator, added as a comparison.

so this program is very slow compared to the performance of this project.
This is by no means a reliable source of information, we will take this as
real information as any slight misinformation does not seriously a�ect this
projects results.

Sims' simulations did have some missing information about simulation
time, but we knew that he had

�an evolution with population size 300, run for 100 generations,
might take around three hours to complete on a 32 processor
CM-5.�[10]

for each generation. Combining this with the information from a lecture,
where video recording of his simulations are shown, we estimated that the
simulations of a creature probably lasted for 10 seconds, but to be sure we
assume that all creatures underwent 20 seconds of simulation.

A di�erent test was also run with reducing number of world threads,
which was done to measure whether or not the simulation scaled fully to
the amount of cores, and give an indication to how much performance was
gained for each subsequent thread.

When judging the performance, we take into consideration Amdahl's
law2. This is a formula made by the computer architect Gene Amdahl, which
should predict the maximum speedup achievable by adding any number of
processors. This law also takes into consideration how parallelized the code
is. We will attempt to calculate how parallel our simulation code is, and
from that determine how well our multi-threaded performance is.

4.1.1 Performance Test

The test was run with similar time and population size, and was able to reach
the 100th generation in 6 minutes and 43 seconds on the Intel i7 processor.
The same benchmark was run on the Intel Core 2 Duo with a runtime of 40
minutes and on the Intel i5 with a runtime of 4 minutes and 18 seconds.

As we can see in Table 4.1, the larger desktop processor i5 performed
the best. The two other processors, designed for use by laptops, showed

2http://en.wikipedia.org/wiki/Amdahl%27s_law

30

http://en.wikipedia.org/wiki/Amdahl%27s_law


Processor/Cores 1 2 3 4 5 6 7 8

Core i5 2500 2:58 1:31 1:05 0:54
Core i7 Q720 5:25 3:37 2:51 2:20 2:00 1:52 1:50 1:44
Core 2 Quad Q6600 5:09 2:44 1:58 1:28
Core 2 Duo T6400 7:40 3:57
Core i7 Q720* 7:31 4:25 3:00 2:07 2:00 1:50 1:49 1:41

Table 4.2: Runtime of the GALAPACOS program (in minutes and seconds),
with varying amounts of simulation threads.

Processor/Cores 1 2 3 4 5 6 7 8

Core i5 2500 1 1.96 2.74 3.3
Core i7 Q720 1 1.5 1.9 2.32 2.71 2.90 2.95 3.13
Core 2 Quad Q6600 1.88 2.76 3.47
Core 2 Duo T6400 1 1.94
Core i7 Q720* 1 1.77 2.51 3.55 3.73 4.10 4.14 4.47

Table 4.3: Amount of time faster, than the comparison. Higher is faster and
one is the comparison.

a lower performance. Although the i7 technically had more cores, it only
operated on 4 physical cores, and they each ran at a lower clock rate, which
resulted in slower performance than the i5. The overall conclusion that we
can draw from these measurements are that more powerful processors pro-
vide signi�cant faster simulation. We were also able to exceed Karl Sims'
runtimes by a large factor. One thing that we discovered, was the fact that
the performance of a 32-processor CM-5 [16] was equal to that of our Core 2
Duo T6400[12], in terms of giga�ops. Both systems had a maximum of 1.9
GFlops.

4.1.2 Core Variation Test

The core variance test was measured at the completion of the 50th genera-
tions, with 10 seconds of simulation per creature, and a population of 300
creatures per generation.

A graph, displaying this data can be found in C.1
As can be seen in Table 4.3 the performance always increases as the

number of cores increase. However, what we are looking for is whether
or not the increase is linear, or there is a signi�cant overhead. When we
look at the graph, we can see that the performance constantly increases,
and does seem to show steady growth, but not linearity. The results also
show that there is no one-to-one core/performance scaling. Generally all
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the processors have 3.5 times the performance, running on 4 cores, than
they do running on 1. Some factors as to why this is not so, could be the
single-threaded nature of the generation builder, which runs in between the
simulation of the generations. While the time appears insigni�cant (usually
between 0.09 0.2 seconds per generation) this is a potential bottleneck, and
the runtime of this will not scale at all. In percentage it is usually between
0.5% and 2%. Of the total time this could add anywhere from 4.5 seconds
to 10 seconds to a simulations total time. This results a growing bottleneck,
the faster the simulations are completed. Other small non-threaded actions
in the program, like the update-loop of the SimGame class, among others,
could also add to the overhead. This however is a very small part of the
overall runtime.

One measurement that sticks out is the i7, which afterwards had to be
remeasured without the built in Turbo Boost enabled, to prevent the au-
tomatic over-clocking from occurring. Turbo Boost will over-clock a single
core, in the case that the other three are not being used, and thus skewed our
results. 3.5 times performance would not be achievable, since the results of
a single core had the advantageous result from re-routing of the other cores'
current. An interesting observation from this measurement is that, when
utilizing the virtual cores (5 though 8) the level of performance exceeds a
factor of 4, which is the number of physical cores in the processor.

Lastly we looked at Amdahl's law, which is an indicator as to how much
performance can be gained, compared to how parallelized the program is,
and the amount of cores the program utilizes. We compared our results
with the limits that Amdahl's law provides. If we add the limitations that
Amdahl describes, to our graph, we can see that with the exception of the i7
with Turbo Boost, our scaling is to that of 97% parallel code. Achieving this
high a parallel code percentage �ts well with our perception of the system.
Building a new generation takes in general .5% to 2% of the full time for
a generation. Adding a little synchronization overhead because of the the
creature queue it adds up to almost 3% overhead. This also shows that the
synchronized rendering approach is a very high performing solution.

The conclusion we came to after this test, is that there is a measur-
able overhead, so 100% utilization of the cores was not achieved. However
when considering the predictions of Amdahl's law, we saw that our program
reached a scaling that was very close to the theoretical maximum perfor-
mance considering every part of the program is not parallel. Had the re-
maining parts of the program also been parallelized the overhead could be
reduced.
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4.2 Creatures

Because of the element of randomness in evolution, creatures not only will
develop unique features, but the same creature can develop di�erently with-
out any outside in�uence. Therefore true comparable scienti�c data is hard
to produce. We can however present di�erent creatures, and analyze how
well they adapted over a number of generations.

4.2.1 Creature Appearance

Judging the look and ability of the creatures, in relation to how natural they
are, is very subjective. Here we will show certain creatures and re�ect upon
their looks, but not provide any scienti�c measurements or tests.
The phenotypes of GALAPACOS, are only boxes connected by thin lines,
that are supposed to represent real creatures. While imagination enabled
us to see something resembling real creatures in the models, in reality, the
creatures are not very realistic in terms of phenotypes. It could be tempt-
ing to say that the boxes and joints instead provide a skeleton, which real
creatures pretty much always has. These skeletons would however then be
missing a big part of their collision, since boxes are only able to interact
with the ground via the boxes, and not the joints. The creatures also don't
have collision internally, so boxes are allowed to overlap. This however did
not subtract much from the believability of the creatures, since it provided
for less boxy silhouettes, and more freedom of movement for the creature.
Another reason for removing the internal collision, was the glitches in the
BEPU engine, where boxes would �y away at great speed, if they were over-
lapping. Another bug we encountered, was that of very short joints (near
zero length) where the connected boxes would be able to turn move out-
side the limitations that the joints provided. While this resulted in new
interesting creatures, the glitchy nature of the joints, made the movements
uncontrollable to the creature. Their movement ended up being random,
even after extensive evolution.

One observation that was made, was that increasing the amount of parts
on the creature, also resulted in more complex creatures, that was harder to
identify as living creatures, but though evolution, and luck some creatures
could be made, that had remarkable resemblances. The downside of a crea-
ture of many parts is that the movement becomes very complex, and the
neural network seems to have di�culties keeping up with the growing num-
ber of joints. As a result movement becomes jaggier and more jittering. Due
to cross-breeding creatures were also able to develop parts, with unnaturally
long joints.

To summarize: the �nal version of the program has no discovered bugs in
terms of creature appearance and physical behavior. Therefore the creatures
now act closer to that of natural creatures, but the natural appearance is
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very limited. Life-like creatures are possible to create, but requires that the
creature consists of many parts. Oppositely movement became less �uid and
natural with the addition of more joints.

4.2.2 Creature Evolution

The evolution of the creature population is a tricky thing to monitor, since
chance can drastically alter the course of a population, and observing every
single creature is simply out of the question. Instead we give an impression
from our observations, as well as any measurements we can make in the
population.

Each selection, �tness and cross-breeding algorithm implemented will be
tested, and compared with each other.

Fitness Algorithms

The �tness algorithms need freedom, in order to truly allow the resulting
behavior, to shine though. Ex. the minimum number of parts needs to
be removed, and the simulation-time needs to take into consideration what
�tness we are looking for, since the �tness algorithms at present only measure
the end state of the creature.

First a test was run for each �tness algorithm, with varying amounts
time.

The observation made was that creatures acted and evolved di�erently
depending on the active �tness function. In the case of Average Distances, we
observed a tenancy for the creatures to gradually move in a straight line, from
moving in circles, as phenotypes began to dominate the population. This
was especially visible in the case of Z Distance-�tness, where the creatures
are only measured in one axis, and movement in a straight line provides
a greater bene�t. In the case of Total Distance and Average Distance w/
Weight Bias, the behavior was quite surprising. While Total Distance was
�rst created as the intended Average Distance, but due to the distances of
parts being added instead of averaged, creatures were created, that simply
grew in size and parts, and saw no need to develop any intelligent movement.
Instead of this behavior, we noticed a tendency to create creatures with two
parts, and just like Average Distance develop e�cient movement. This same
tendency was also noticed in Average Distance w/ Weight Bias. Reducing
the simulation time to 10 seconds showed behavior closer to our expectations,
but rarely showed creatures with more than 3 parts.

Ground Touching also had the same habit of creating creatures with just
2 parts. These creatures however evolved to move forward, with a higher
jumping-motion than other creatures.

A very surprising result we found, was the simulation of the Height �t-
ness. When the program started, an unusually high performance seemed to
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Fitness Function Explanation Simulation Time (seconds)

Average Distance Measures the
average distance
of the creature's
parts from the
start position (X
and Z axis)

20

Average Distance w/ Weight Bias Measures the
average distance,
and multiplies
by the amount
of parts on the
creature

20

Ground Touching Measures average
distance, and re-
duces �tness to 0
if the any part
of the creature
is touching the
ground

10

Total Distance Measures the
combined dis-
tance of the
creature's parts
from the start
position

20

Z Distance Measures the av-
erage Z distance
(depth) of the
creature's parts
from the start
position

20

Height Measures the av-
erage Y distance
(height) of the
creature's from
the ground

5
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be present in the non-rendering mode, and when we switch to a rendering
mode, we could see that simulations either lasted a fraction of a second, or
the frame-rate would have to have gone though the roof (yet the frame-rate
counter said otherwise). Once we were able to move the camera to point
at the creature, we we struck by how simply our system was abused. To
increase performance, simulation of a creature will terminated, of it is de-
tected that the creature only consists of a single part. Since all creatures
will be spawned at a �xed height, the algorithm exploited this, and the one-
parted creatures gained an advantage over the creatures that had fallen to
the ground. This was a great example of exploiting bugs and loopholes to
gain a higher �tness.

After the loophole was corrected we observed a the intended behavior.
Creatures that would appear to jump, were created. Surprising was it how-
ever that these jumping creatures preferred 3 pars, and never developed
any e�cient 2-part creatures. Apparently the a 3-part creature can reach
higher, by executing back�ips, while pulling the lower bodyparts with it, to
a higher area. Due to the gravity, the creatures would also have to execute
two jumps in the 5 second lifespan, since the height is measured at the end
of the simulation.

In conclusion, we have observed that creatures are able to create behavior
though our virtual evolution, that changes depending on what �tness is being
measured. The behavior also follows a somewhat predictable pattern for each
�tness function. Furthermore creatures have a tendency to be smaller, and
have fewer parts. Creatures with many parts are di�cult to produce, even
with �tness algorithms that try to favor these. To increase the number of
parts, some sort of manual intervention, or tampering with mutation needs
to be implemented.

Selection Algorithms

Three selection algorithms were implemented in GALAPACOS: Probability
Tournament, Size Tournament and Random Selection. Each will be run 3
times in the simulator with similar settings for 40 generations, where the
population �tness will be measured at the 3rd, 10th, 20th and 40th genera-
tion on di�erent statistics.

Figure C.3 As can be seen from the results in the table, the highest �tness
obtained from these three methods of selection, do not deviate much from
each other. However Size Tournament did receive the highest results after
40 generations, and random the lowest, but the di�erence seems small. But
Size Tournament does separate itself, by quickly having reached the same
solution, that also dominates after 40 generation.

Even more interesting is the data for Size Tournament in the average
and median. We can see that the median and average quickly approaches
the same as the best result, which is an indication that the population is
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�overrun� by that creature. Domination often leads to less stimulation for
further development, and it is probable that there after 40 more generations
would not be much more development.

Opposite Size Tournament, Random Tournament has massive deviance
in its population. Even after 40 generations. Here further development is
more likely to occur, but the random nature of the selection (only saved
by the implementation of Elitism �Elite�, section 4.2.2) makes the further
development very unpredictable, and as we can see from the median, the
population is rather low in �tness, even after 40 generations.

In early development, as a response to these extremes of selection, we
created the Probability Tournament, which was supposed to lead the popu-
lation on a path, between the two extremes. Further evolution should still
be stimulated, but the population had to follow with the best creature to
a degree. The results show that Probability Tournament is a middle way
between the other two selection algorithms, but that the results also seem
to su�er in terms of best �tness.

In conclusion we can see that Random Tournament is able to produce
good results, but lacks in terms of good �tness in its diverse gene pool. Size
Tournament ends up with the best �tness results, but lacks a diverse gene
pool. Probability tournament has a diverse gene pool, with high �tness, but
does not end up producing �tter creatures than the Size Tournament.

Elite

Elitism covers two areas in terms of selection. First of all elite in our program
refers to the saving of the best creature, but also quarantine. We think of it
as the memory of a record holder. The record holder may have had children,
but if those children do not carry on the good genes, they are pretty much
lost. Elite copy however is more like knowledge that is stored. Instead
of quarantining the best creatures, they are copied for each generation, so
the good genes will always stay alive. To test the e�ectiveness of these two
additions to the selection algorithms, we tested each selection algorithm with
5% of the population reserved for the elite, but without the elite copy. Then
another test with the elite copy, and �nally a test with neither elite selections.

As we can see in Figure C.2 the lack of memory in the generation, except
that of the DNA, shows its downsides, since no steady development in the
population is visible. Even with the size tournament, no o�spring is guaran-
teed to have e�ciently assembled genes, and otherwise amazing results can
quickly get lost in the following generation.

With the addition the elite, but without the elite copy, we can see that
evolution now is guaranteed Figure C.2. in terms of best �tness. Keep
in mind that the general population still follows the same trends, as the
simulations without any form of elite. The observed average and median
values was ranging from 5-12, and never grew any further.
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The �nal test had median and average results similar to that of the
selection algorithm results in �Selection Algorithms�, section 4.2.2. Here the
population also climbed steadily, but the average and median values also
climbed as the top �tness values grew. This was the result of good �tness
genes being forced to stay in the population in later generations. As we can
also see from Figure C.2 improvements to the creatures were found faster
than the simulations without elite copy. This was most likely due to the
saved DNA, that was being preserved in the population.

To conclude on our selection algorithms in combination with elites, we
have seen that the choice of selection algorithm can have an impact on the
best �tness of a population, but that the �tness needs some sort of undy-
ing elite to remain among the creature population until �tter creatures are
produced, and take over as the elite.
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5. Evolved Creatures

As an extension to our results chapter, we present the results that we did
not �nd appropriate to include as tests, since they were all the outcome of
chance. This is chapter devoted to showing and analyzing the creatures we
have developed during the production of GALAPACOS.
A collection of creature videos, including those mentioned here, can be
viewed on the YouTube channel: �galapacosproject�1.

5.1 The Evolved Creatures

5.1.1 Runners

Here we will discuss the best creatures that were the result of �tness algo-
rithms designed to create creatures adapted to running.

The �rst race is an example of what we call a �motorcycle creature� due
to the long shape, and method of propulsion. It has two touching points, and
uses the back end to push itself forward. This creature has been very common
throughout the project period, and has appeared in many variations, but
always has the above mention properties. Examples of this creature can be
seen in the �Motorcycle.avi� video supplied on the CD, and Figure B.2 in
the appendix. One observation about this race is that it always develops a
longer joint for the back-part, and keeps all other parts relatively close. This
design is very e�cient since the longer joint provides a farther push, and
the front shape helps the creature not suddenly standing up and jumping
backwards.

Other evolutions of the motorcycle creature can be seen on the YouTube
channel.

A second very abundant race is the �head-�ipper�. This race is made up
of creatures that have developed a concave body, with a head at one end,
that tilts back and forth, and makes the creature jump in that direction.
Examples of the head-�ipper can be found on the CD as �head �ipper 2.avi�
and Figure B.1. The head-�ipper race also has a tendency to have a long
�neck� between the body and head, the development of which provides a

1http://www.youtube.com/user/galapacosproject/videos
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higher and further jump. The Concave body is used to both tilt the body
forward on landing as well as providing a good timing for the head �ip, as
a special part of the creature touches the ground. A rather odd head�ipper
was also observed, with a head actually resembling a �ipper. This is the
video included on the CD.

The �back�ipper� is a creature that was created via �rst developing a
creature suited for jumping. By changing the �tness function to instead
measure distance, the creature quickly learned to jump in a direction rather
than upwards. The resulting creature is one of extraordinary balance and
timing. Two large �legs� prevents the creature from falling over, and the
middle-body is built to support in the �ip. One of the feet is also used at
the contact sensor that starts the execution of a �ip. This creature can be
observed in the �back�ipper 1.avi� �le included.

This next, rather ine�cient, walking creature is mentioned due to its
appearance. Most people who has watched it in action seem to identify it
as a cute creature with two big feet, a body and head. Once it is spawned,
it corrects itself to an upright position, and proceeds to jump forward, and
uses its two feet to not lose balance. The head and neck provide the jumping
motion. We have called this creature �cutie�. �Cutie.avi� is included.

5.1.2 Jumpers

Usually though the evolution of a population, one race of creatures seemed
to emerge every time. This the jumping version of our �back�ipper�. This
creature uses its long body/neck to create a whiplash that provides upward
momentum. Once the creature is in the air, is curls its body, to maximize the
average height. This motion also provides a backwards roll. If the creature
lands, it will straighten back out and execute more back�ips. This creature
is included as a video on the CD, and Figure B.4 in the appendix.

One creature that diverged from this trend was the �spin-jumper� (�Spin-
jumper 3.avi� on the CD). The creature had a circular shape of boxes, and
joints that appeared to meet on the middle. To execute a jump it would
spin most of the body around the center part of the creature and stop them,
to leave the ground. Since one of the parts being swung around was very
heavy, the stop would provide a catapult-like e�ect, and pull the creature
o� the ground. Another �leg� of the creature would also be used as part of
the catapulting, by hitting the ground near the end of the catapult, to also
provide a push o� the ground, in a addition to the upwards pull.

5.1.3 Special Creatures

This section is reserved for creatures that require special mentions, or simply
blew our minds.

The �rst creature on the list is the �worm� which we have seen in two
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di�erent versions (�Rolling worm.avi� and �Worm.avi�). This creature owes
its shape to the restraint of only producing new parts along a single axis.
Once the creature spawns, the joints contract, and provides the worm like
S-shape. This shape then proceeds to move forward, by producing wave-like
motions.

A di�erent worm evolved with a di�erent motion for forward momentum.
This creature Closed itself into a C-shape upon spawning, and once it con-
tacts the ground it opens up into a 3-shape. During the jump it closes upon
itself again, and proceeds to land and roll using its now round body. When
the time is right, is straightens itself out again, and repeats the motion, to
jump and roll forward.

The third special creature we would like to present, is the jumping horse.
This is the result of the creatures being forced a minimum of 10 shapes.
The resulting creature is what we refer to as the �mad horse�. The creature
has two legs pointing to the sides that provide support. Two other legs
point perpendicular outwards, compared to the to �rst legs, and these have
movement. They rock up and down like a see-saw, and this motion we
see as resembling that of an angry horse, jumping and kicking. While the
physical shape probably looks more like some other creatures, we �nd this
resemblance rather amusing, and hence why we included it and its peculiar
motions. This creature can be found in the video �Mad-horse 1.avi� on the
CD, and Figure B.5 in the appendix.

The �nal creature is our prized trophy. At the beginning of the project,
we were told that getting a four-legged creature to stand up was a mar-
velous feat, and we immediately set ourselves the goal of doing just that.
This creature is not a result of that goal, but a result of chance and our
program creating a creature that appears to be walking on four legs. The
creature is included as a .crit �le on the CD, that can be opened though the
GALAPACOS .exe executable. The creature that has been triumphantly
been named �4-legged� even though actual 4-legged movement is open to
discussion. The creature has a �at crab-like appearance, with a small core,
as its central body, and six boxes surrounding it. Two of the boxes are big,
and being held o� the ground, at the �front� of the creature, and are used
for rocking the creature from side to side. These two �antlers� very rarely
touch the ground, and are therefore not considered as legs. The remaining 4
legs are two thin front legs, and two cubes as hind legs. These legs move in
sync with the rocking motion, and are used for moving the creature forwards.
While this is nowhere near the 4-legged creature we had in mind, it was an
example of very complex movement. Videos of the creature can be found on
the YouTube channel, and a screenshot is provided in part Figure B.6 in the
appendix.
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6. Future Work

Future work for this project would in large part be to remove the limitations
described in Solution Limitations. The most important limitation to over-
come would be the creation of the phenotype. Symmetric limps, like elbow
joints, feet and legs would be interesting to experiment with. Experimenting
with creatures with features similar to a four legged creature or perhaps a
centipede could provide interesting work.

Manually creating a phenotype and disallowing mutating of it, but still allow-
ing mutation of the neural network could give insight into how now extinct
creatures walked. Creating the phenotype similar to a Tyrannosaurus rex
or Brontosaurus and evolving how they walk, could give interesting insight
into how they walked millions of years ago.

Evaluating the �tness creatures �tness continuously could give a more bal-
anced view of the creatures. I.e. a creature moving in circles could be given
evaluated for the sum of the movement, not just the �nal result.

A simple improvement would be the addition of some reference points in
the world. Implementing shadows could improve the observability of the
program. Adding reference points to the world could also help.
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7. Conclusion

To summarize, we created a simulation of Darwinian evolution with use of
parallelism to speed up the simulation. We reached all our required goals,
but did not accomplish any of the additional goals.
The created program's performance was close to linear scaling up to a least
four cores, no higher amount of CPU cores were tested. Extra hardware
threads per core scaled poorly, as expected. We were able to create virtual
creatures in the simulated world through mutation, and di�erent selection-
, �tness- and crossover algorithms. Thanks to a virtual brain, simulated
using a neural network, these creatures achieved both simple and complex
movement. We evolved creatures that successfully adapted to moving and
jumping. Totally random evolution did not produce creatures with both
good capabilities and complex appearance, but limiting the boundary of the
mutation produced better results.

We also showed the impact that the selection algorithms and elite selec-
tion had on the population, and the diversity of creatures. Some limitations
were met during the development and some desired features did not end up
being implemented, but would be interesting to improve in future work.

Some videos can be seen on the included CD, but due to the limited CD size
all videos have been uploaded to Youtube.
www.youtube.com/user/galapacosproject/videos?view=1

Short link: goo.gl/qZHqL
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Full Genotype

Part de�nition

Example:
p:0,t=h,x=0,y=-35,z=0,sx=4,sy=4,sz=4,ox=0,oy=0,oz=0,m=20,kfr=9.636603,sfr=10

Type=p:
id=-1 - Unique id
t=h,b,l - Part Type (head, body, limb)
x=0,y=0,z=0 - position in 3D space
sx=1,sy=1,sz=1 - sizes for each axis
ox=1,oy=1,oz=1 - orientation axis - Not used m=1 - physical mass
kfr=1 - kinetic friction
sfr=0.4 - static friction

Joint de�nition

Example:
j:s,id=0,p1=0,p2=1,jx=0,jy=0,jz=0,rx=0,ry=0,rz=0,fmin=-1.256637,fmax=1.256637,hforce=10000,speed=4.712389,fa=True

Type=j:
id=-1
t=s - Join type - only swivel hinge is used (revolute like with slightly more
freedomg)
p1=-1,p2=-1 - id of the two connected parts.
jx=0,jy=0,jz=0 - joint o�set - not used
rx=0,rx=0,rz=0 - rotation-axis: Not used
fmin=-1 - Joint min angular freedom.
fmax=1 - Joint max angular freedom.
hforce=10000 - strength for the joint
speed - how fast a joint can move
fa=false - should the joint be �ip? Meaning min angle becomes max and
visa versa

Neuron de�nition
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Example:
n:1,c=input,t=Sigmoid,p=0,j=0

Type=n:
type=Sigmoid - neuron type. Could also be wave, gaussian or threshold
c=category - normal, input or output neuron
id=-1
p=-1 - id to the attached part - not used.
j=-1 - id of the joint attached to

Connection de�nition

Example:
c:sid=9,tid=15,w=1.086872

Type=c:
sid - id of the source neuron
tid - id of the target neuron
w=1.0 - connection weight
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Creature Snapshots

Figure B.1: The head �ipper creature. The head is the rightmost box.
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Figure B.2: The motorcycle creature. The rightmost part provides propul-
sion.

Figure B.3: Two-parted walking/jumping creature. Top part nods up and
down to jump/move.
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Figure B.4: Back�ip-jumper. Stretches the into a straight line to jump
upwards.

Figure B.5: The mad horse. Leftmost and rightmost boxes are supporting
legs. Highest box is head, that moves up and down with the rest of the body.
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Figure B.6: 4-legged creature. Two highest boxes are the antlers for rocking
from side to side. Creature is here �looking at the camera�. Two smallest
boxes make up the core body.
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Performance Results

C.1 Core Variation Results Graph

Figure C.1: Results of the core variation test. i7* = i7 with no Turbo Boost.
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C.2 Selection Test Graphs

Figure C.2: Results of test with 0 elite percentage.

C.3 Selection Comparison Results
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Figure C.3: Results of test with 5 percentage of 5, but no elite copying.

Figure C.4: Results of test with 5 percent elite, and elite copy.
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Figure C.5: Results of test, comparing di�erent selection algorithms.
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Miscellaneous

Figure D.1: Human approximated via simple shapes. http://udn.

epicgames.com/Three/PhysicalAnimation.html
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